

Tuesday 21 June 2016 – Morning

A2 GCE MATHEMATICS

4723/01 Core Mathematics 3

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4723/01
- List of Formulae (MF1)

Duration: 1 hour 30 minutes

Other materials required: • Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

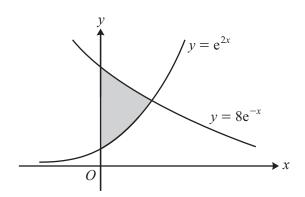
Answer **all** the questions

1 Find the equation of the tangent to the curve

$$y = 3x^2(x+2)^6$$

at the point (-1, 3), giving your answer in the form y = mx + c.

- 2 Find
 - (i) $\int \left(2 \frac{1}{x}\right)^2 dx$, (ii) $\int (4x + 1)^{\frac{1}{3}} dx$.
- 3 The mass of a substance is decreasing exponentially. Its mass is m grams at time t years. The following table shows certain values of t and m.


t	0	5	10	25
m	200	160		

- (i) Find the values missing from the table.
- (ii) Determine the value of *t*, correct to the nearest integer, for which the mass is 50 grams. [4]
- 4 It is given that *A* and *B* are angles such that

 $\sec^2 A - \tan A = 13$ and $\sin B \sec^2 B = 27 \cos B \csc^2 B$.

Find the possible exact values of tan(A - B).

5

The diagram shows the curves $y = e^{2x}$ and $y = 8e^{-x}$. The shaded region is bounded by the curves and the *y*-axis. Without using a calculator,

- (i) solve an appropriate equation to show that the curves intersect at a point for which $x = \ln 2$, [2]
- (ii) find the area of the shaded region, giving your answer in simplified form.

[5]

[5]

[8]

[5]

[2]

The curves C_1 and C_2 have equations

6

$$y = \ln(4x - 7) + 18$$
 and $y = a(x^2 + b)^{\frac{1}{2}}$

respectively, where a and b are positive constants. The point P lies on both curves and has x-coordinate 2. It is given that the gradient of C_1 at P is equal to the gradient of C_2 at P. Find the values of a and b. [8]

1

- 7 (i) By sketching the curves y = x(2x+5) and $y = \cos^{-1}x$ (where y is in radians) in a single diagram, show that the equation $x(2x+5) = \cos^{-1}x$ has exactly one real root. [3]
 - (ii) Use the iterative formula

$$x_{n+1} = \frac{\cos^{-1}x_n}{2x_n + 5}$$
 with $x_1 = 0.25$

to find the root correct to 3 significant figures. Show the result of each iteration correct to at least 4 significant figures. [4]

(iii) Two new curves are obtained by transforming each of the curves y = x(2x+5) and $y = \cos^{-1}x$ by the pair of transformations:

reflection in the x-axis followed by reflection in the y-axis.

State an equation of each of the new curves and determine the coordinates of their point of intersection, giving each coordinate correct to 3 significant figures. [4]

8 The functions f and g are defined for all real values of x by

f(x) = |2x+a| + 3a and g(x) = 5x - 4a,

where *a* is a positive constant.

- (i) State the range of f and the range of g. [2]
- (ii) State why f has no inverse, and find an expression for $g^{-1}(x)$. [3]
- (iii) Solve for x the equation gf(x) = 31a. [5]
- 9 (i) Show that $\sin 2\theta (\tan \theta + \cot \theta) \equiv 2$. [4]
 - (ii) Hence
 - (a) find the exact value of $\tan \frac{1}{12}\pi + \tan \frac{1}{8}\pi + \cot \frac{1}{12}\pi + \cot \frac{1}{8}\pi$, [3]
 - (b) solve the equation $\sin 4\theta (\tan \theta + \cot \theta) = 1$ for $0 < \theta < \frac{1}{2}\pi$, [3]
 - (c) express $(1 \cos 2\theta)^2 (\tan \frac{1}{2}\theta + \cot \frac{1}{2}\theta)^3$ in terms of $\sin \theta$. [2]

END OF QUESTION PAPER

Q	uestion	Answer	Marks	Guidance
1		Differentiate to produce form $k_1 x (x+2)^m + k_2 x^2 (x+2)^n$	*M1	For positive integers k_1, k_2, m, n ; allow M1 if slip to, for example, $(x+3)$ in both brackets
		Obtain $6x(x+2)^6 + 18x^2(x+2)^5$ Substitute $x = -1$ to obtain value 12 Attempt equation of tangent (not normal) through point (-1, 3) Obtain $y=12x+15$	A1 A1 M1 A1 [5]	Or unsimplified equiv From correct work only Dep *M; using non-zero numerical value of gradient; condone slip in use of coordinates Answer required in $y = mx + c$ form
2	i	Expand to produce form $k_1 + \frac{k_2}{x} + \frac{k_3}{x^2}$ Obtain $4x - 4\ln x - \frac{1}{x}$ or $4x - 4\ln x - x^{-1}$	M1	 For non-zero constants k₁, k₂, k₃; allow if middle term appears as two, so far, unsimplified terms Condoning absence of modulus signs but A0 if expression involves ln x or 4ln x
	ii	Integrate to obtain form $k(4x+1)^{\frac{4}{3}}$ Obtain $\frac{3}{16}(4x+1)^{\frac{4}{3}}$	M1 A1	Any non-zero constant <i>k</i> With coefficient simplified
		Include $\dots + c$ or $\dots + k$ at least once anywhere in answer to question 2	B1 [5]	Even if associated with incorrect integral

Question		Answer	Marks	Guidance	
3	i	Obtain 128 for value corresponding to 10 Obtain 65.5 for value corresponding to 25	B1 B1 [2]	Allow any value rounding to 128 Allow any value rounding to 65 or 66; whether obtained using powers of 0.8 or by use of formula	
	ii	Attempt to find formula for <i>m</i> of form $200e^{kt}$ or $200 \times r^{\lambda t}$ Obtain $200e^{(0.2 \ln 0.8)t}$ or $200e^{-0.0446t}$	M1	Whether attempted in part (i) or (ii)	If formula attempted in part (i), marks earned must be recorded in part (ii)
		or $200 \times 0.8^{0.2t}$ or 200×0.956^t Show correct process for solving equation of	A1	Or equiv	
		form $200e^{kt} = 50$ or $200r^{\lambda t} = 50$ Obtain 31	M1 A1	Or greater accuracy rounding to 31; ignore any units given; second M1 is implied by correct answer	Special case: no formula anywhere and answer 31 (or greater accuracy) given, award B2 (i.e. 2/4 for part (ii))
			[4]		8
4		Use identity $\sec^2 A = 1 + \tan^2 A$ Attempt solution of three-term quadratic	B1		
		equation to obtain two values of $\tan A$	M1	Implied if correct values obtained; allow M1 for incorrect factorisation provided expansion would give correct first and third terms; allow M1 for incorrect use of formula if only one error present	
		Obtain $\tan A = -3$ and $\tan A = 4$	A1	And no others; implied by $A = \tan^{-1} - 3$ and $\tan^{-1} 4$;	A = -3, 4 is A0 here unless subsequent work shows values used correctly
		Use correct identities to produce equation in $\tan B$ only	M1	Equation might be $t^3 = 27 \dots$	or $t^5 + t^3 - 27t^2 - 27 = 0$
		State $\tan B = 3$	A1	And no others	

Q	uestion	Answer	Marks	rks Guidance	
		Substitute at least one pair of non-zero numerical values into $\frac{\tan A - \tan B}{1 + \tan A \tan B}$ Obtain one of $\frac{1}{13}$ and $\frac{3}{4}$ or exact equiv Obtain the other exact value or equiv	M1 A1 A1 [8]	Must be the correct identity And no others	
5	i	Either State $e^{2x} = 8e^{-x}$ and so $e^{3x} = 8$ Obtain $e^x = 2$ and hence $x = \ln 2$	B1 B1	AG; necessary detail needed	Verifying by substitution of ln2 in each equation earns B0B0
		Or 1 State $e^{2x} = 8e^{-x}$ and so $e^{3x} = 8$ State $3x = \ln 8$, $x = \ln 8^{\frac{1}{3}}$ and hence $x = \ln 2$ Or 2 State $e^{2x} = 8e^{-x}$ and $2x = \ln 8 - x$	B1 B1	AG; necessary detail needed	Going immediately from $x = \frac{1}{3} \ln 8$ to $x = \ln 2$ does not earn the second B1
		State $3x = \ln 8$, $x = \ln 8^{\frac{1}{3}}$ and hence $x = \ln 2$	B1 B1 [2]	AG; necessary detail needed	Going immediately from $x = \frac{1}{3} \ln 8$ to $x = \ln 2$ does not earn the second B1
	ii	Integrate to obtain $k_1 e^{-x}$ and $k_2 e^{2x}$ Obtain correct $-8e^{-x} - \frac{1}{2}e^{2x}$ or, if done separately, $-8e^{-x}$ and $\frac{1}{2}e^{2x}$	M1 A1	Any non-zero constants k_1 and k_2	
		Apply limits 0 and ln 2 correctly to their integral(s)	M1	Condone one sign slip; earned by sight of $-8e^{-\ln 2} - \frac{1}{2}e^{2\ln 2} + 8 + \frac{1}{2}$ (or equivs if integrals treated separately)	M1 also implied by sight only of $-4-2+8+\frac{1}{2}$ (or equivs)
		Obtain at least $-4-2+8+\frac{1}{2}$ (or equivs) Obtain $\frac{5}{2}$ or equiv	*A1 A1 [5]	Final A1 dependent on *A1	

Question		Answer	Marks	Guidance
6		State, at some stage, $a(4+b)^{\frac{1}{2}} = 18$	B1	
		Obtain derivative $\frac{4}{4x-7}$ for C_1	B1	
		Obtain derivative $kx(x^2 + b)^{-\frac{1}{2}}$ for C_2	M1	Any non-zero constant k
		Obtain correct $ax(x^2+b)^{-\frac{1}{2}}$	A1	
		Equate derivatives with $x=2$ Attempt values of <i>a</i> and <i>b</i> from two	M1	
		equations involving <i>a</i> and $(4+b)^{\frac{1}{2}}$	M1	Using correct process
				Correct equations are $a(4+b)^{\frac{1}{2}} = 18$ and
		Obtain $a=6$ Obtain $b=5$	A1 A1	$2a(4+b)^{-\frac{1}{2}} = 4$
			[8]	
7	i	Draw more or less correct sketch of $y = \cos^{-1} x$ existing in first and second quadrants Draw U-shaped parabola passing through origin and showing minimum point Indicate one intersection in first quadrant by blob or reference in words or	*B1 *B1 B1 [3]	 Ignore any curve outside 0≤ y≤π; condone no or wrong intercepts on axes Curve must exist in first and third quadrants Dep *B *B

Question	Answer	Marks	cs Guidance		
ii	Obtain correct first iterate showing at least 4 s.f. rounded or truncated Show iterative process to produce at least three iterates in all showing at least 3 s.f. Obtain at least four correct iterates in all showing at least 4 s.f. Conclude with value 0.242	B1 M1 A1 A1 [4]	Implied by incorrect values apparently converging Allowing recovery after error Answer to be clearly indicated by underlining final value in sequence or by separate statement; answer required to precisely 3 s.f.; allow final A1 even if iterates have been shown to only 3 s.f.; answer only earns 0/4	0.25 0.23965 0.24250 0.24172 0.24193	
iii 8 i	State $y = -\cos^{-1}(-x)$ or $y = \cos^{-1}x - \pi$ State $y = x(-2x+5)$ or equiv State -0.242 for x-coordinate State -1.33 for y-coordinate State range of f is $f(x) \ge 3a$ or $y \ge 3a$ State range of g is all real numbers or equiv such as $y \in \mathbb{R}$ (real numbers)	B1 B1 FT B1 [4] B1 B1 [2]	Allow $y =x(2(-x)+5)$ or similar; condone missing $y =$ in each case Following their answer to (ii); allow greater accuracy here Allow value rounding to -1.33 Allow $f \ge 3a$ or equiv expression in words but $3a$ to be included		

Question	Answer	Marks	Guidanc	e
ii	State function is not $1 - 1$ or different <i>x</i> -values give same <i>y</i> -value or equiv	B1	no credit for 'no inverse due to modulus' nor for 'cannot be reflected across $y = x$ '	
	Obtain form $k(y+4a)$ or $k(x+4a)$	M1	for non-zero constant k	
	Obtain $\frac{1}{5}(x+4a)$ or $\frac{1}{5}x+\frac{4}{5}a$	A1 [3]	Must finally be in terms of x	
iii	Either Attempt composition of functions the right way round Obtain $5 2x+a +11a=31a$ or equiv	M1 A1	Earned for 5(what they think $f(x)$ is) – 4 <i>a</i>	
	Or Apply their g^{-1} to $31a$ Obtain $ 2x+a +3a=7a$ or equiv	M1 A1		
	Either Solve $2x + a = 4a$ and obtain $\frac{3}{2}a$ Solve linear equation in which signs of (their) $2x$ and (their) $4a$ are	B1 FT	Following their $ 2x + a = ka$	
	different	M1	Condone other sign slips	
	Obtain $-\frac{5}{2}a$	A1	And no others; obtaining $-\frac{5}{2}a$ and then	
			concluding $\frac{5}{2}a$ is A0	
	Or Square both sides and obtain $4x^2 + 4ax - 15a^2 = 0$	B1 FT	Following their $ 2x + a = ka$	
	Solve 3-term quadratic equation to obtain two values	M1	Allow M1 if factorisation wrong but expansion gives correct first and third terms; allow M1 if incorrect use of formula involves only one error	
	Obtain $-\frac{5}{2}a$, $\frac{3}{2}a$	A1	And no others; continuing from two correct	
		[5]	answers to conclude $\frac{5}{2}a$, $\frac{3}{2}a$ is A0	

Mark Scheme

Q	Questio	n			Marks Guidance		
9	i		Use $\sin 2\theta = 2\sin\theta\cos\theta$ $\sin\theta = \cos\theta$ 1	B1			
			State $\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}$ or $\tan\theta + \frac{1}{\tan\theta}$	B1	Perhaps as part of expression		
			Simplify using correct identities	M1		Note that going directly from $2\sin^2\theta + 2\cos^2\theta$ to 2 is M0 but	
			Obtain 2 correctly	A1	AG; necessary detail needed	$2(\sin^2\theta + \cos^2\theta) \text{ to } 2 \text{ is M1A1}$	
				[4]			
	ii	a	Obtain expression involving at least one of	M1			
			$\sin \frac{1}{6}\pi$ and $\sin \frac{1}{4}\pi$	I VI I			
			Obtain $\frac{2}{\sin\frac{1}{6}\pi} + \frac{2}{\sin\frac{1}{4}\pi}$	A1	Or equiv involving cosecant		
			Obtain $4+2\sqrt{2}$ or exact equiv	A1	Answer only is 0/3		
				[3]			
		b	Use $\sin 4\theta = 2\sin 2\theta \cos 2\theta$	B1			
			Obtain $\cos 2\theta = \frac{1}{4}$ or $\cos^2 \theta = \frac{5}{8}$ or $\sin^2 \theta = \frac{3}{8}$	B1			
			$\sin^2 \theta = \frac{3}{8}$ Obtain 0.659 or 0.66	B1	Or greater accuracy; and no others between 0		
					and $\frac{1}{2}\pi$; allow 0.21π but not 0.659π ;		
				[3]	answer only earns $0/3$		
		c	Express in form $k_1 \sin^4 \theta \times \frac{k_2}{\sin^3 \theta}$	M1			
			Obtain $4\sin^4\theta \times \frac{8}{\sin^3\theta}$ and hence $32\sin\theta$	A1	A0 if $(-2\sin^2\theta)^2$ involved in simplification		
				[2]			